Welcome Page The Neurologist Neurology Find Us Patient Forms
Welcome Page
The Neurologist
Neurology
Find Us
Patient Forms
Patient Library
Links
Stroke
Headache
Memory Loss
Epilepsy
Sleep Disorders
Movement Disorders
Feedback Form
 
NAVIGATING THIS WEBSITE



.

 



 Multiple Sclerosis Risk Factors:


The specific cause of MS is not fully understood. Symptoms are caused by an abnormal inflammatory attack on the nerves of the brain or spinal cord. This inflammatory response may be triggered by genetic, environmental, and viral factors that initiate demyelination.

Demyelination is associated with an abnormal immune system response that causes a type of white blood cell (called T cells) to attack myelin. Damage to the myelin then leads to sclerosis of nerve fibers in the central nervous system (CNS). The CNS has the ability to repair some of the damage but may not be able to achieve complete restoration. Exacerbations and remissions (common in multiple sclerosis) result from the intermittent damage and restoration.


 

Genetic Factors

MS is not considered a hereditary disease. However, a number of generic variations have been shown to increase the risk of developing the disease.

The risk of acquiring MS is higher in relatives of a person with the disease than in the general population, especially in the case of siblings, parents, and children. The disease has an overall familial recurrence rate of 20%. In the case of monozygotic twins, concordance occurs only in about 35% of cases, while it goes down to around 5% in the case of siblings and even lower in half-siblings. This indicates susceptibility is partly polygenically driven.

It seems to be more common in some ethnic groups than others.

Apart from familial studies, specific genes have been linked with MS. Differences in the human leukocyte antigen (HLA) system—a group of genes in chromosome 6 that serves as the  major histocompatibility complex (MHC) in humans—increase the probability of suffering MS. The most consistent finding is the association between multiple sclerosis and alleles of the MHC defined as DR15 and DQ6. Other loci have shown a protective effect, such as HLA-C554 and HLA-DRB1*11.

Environmental Factors

Different environmental factors, both of infectious and non infectious origin have been proposed as risk factors for MS. Although some are partly modifiable, only further research—especially clinical trials—will reveal whether their elimination can help prevent MS.

MS is more common in people who live farther from the equator, although many exceptions exist. Decreased sunlight exposure has been linked with a higher risk of MS. Decreased vitamin D production and intake has been the main biological mechanism used to explain the higher risk among those less exposed to sun.

Severe stress may also be a risk factor although evidence is weak. Smoking has also been shown to be an independent risk factor for developing MS. Association with occupational exposures and toxins—mainly solvents—has been evaluated, but no clear conclusions have been reached.  Vaccinations were also considered as causal factors for the disease; however, most studies show no association between MS and vaccines.    Several other possible risk factors, such as diet and hormone intake, have been investigated; however, more evidence is needed to confirm or refute their relation with the disease.

Gout occurs less than would statistically be expected in people with MS, and low levels of uric acid have been found in MS patients as compared to normal individuals. This led to the theory that uric acid protects against MS, although its exact importance remains unknown.

Infections

Many microbes have been proposed as potential infectious triggers of MS, but none has been substantiated.

Genetic susceptibility can explain some of the geographic and epidemiological variations in MS incidence, like the high incidence of the disease among some families or the risk decline with genetic distance, but does not account for other phenomena, such as the changes in risk that occur with migration at an early age. An explanation for this epidemiological finding could be that some kind of infection, produced by a widespread microbe rather than a rare pathogen, is the origin of the disease. Different hypotheses have elaborated on the mechanism by which this may occur. The hygiene hypothesis proposes that exposure to several infectious agents early in life is protective against MS, the disease being a response to a later encounter with such agents. The prevalence hypothesis proposes that the disease is due to a pathogen more common in regions of high MS prevalence. This pathogen is very common, causing in most individuals an asymptomatic persistent infection. Only in a few cases, and after many years since the original infection, does it cause demyelination. The hygiene hypothesis has received more support than the prevalence hypothesis.

Evidence for viruses as a cause includes the presence of oligoclonal bands in the brain and cerebrospinal fluid of most patients, the association of several viruses with human demyelination encephalomyelitis, and induction of demyelination in animals through viral infection. Human herpes viruses are a candidate group of viruses linked to MS. Individuals who have never been infected by the Epstein-Barr virus have a reduced risk of having the disease, and those infected as young adults have a greater risk than those who had it at a younger age. Although some consider that this goes against the hygiene hypothesis, since the non-infected have probably experienced a more hygienic upbringing, others believe that there is no contradiction since it is a first encounter at a later moment with the causative virus that is the trigger for the disease. Other diseases that have also been related with MS are measles, mumps and rubella.

A higher incidence of MS in certain geographical areas, such as the northern United States, suggests that environmental factors may be involved, but none have been confirmed.

A specific viral risk factor has not been indentified, but exposure to a virus that causes demyelination (especially prior to adolescence) may be a risk factor.

 Primary source - Wikipedia













www.consultantsinneurology.com

Raymond Rybicki, MD

This information is for general educational uses only. It may not apply to you and your specific medical needs. This information should not be used in place of a visit, call, consultation with or the advice of your physician or health care professional. Communicate promptly with your physician or other health care professional with any health-related questions or concerns.

Be sure to follow specific instructions given to you by your physician or health care professional




The materials provided at this site are for informational purposes and are not intended for use as diagnosis or treatment of a health problem or as substitute for consulting a licensed medical professional. Check with a physician if you suspect you are ill, or believe you may have one of the problems discussed on our website, as many problems and diseases may be serious and even life-threatening. Also note while we frequently update our website's content, medical information changes rapidly.
 
ConsultantsInNeurology.com

Site Map